Что такое искусственный интеллект (ИИ):
определение понятия простыми словами
Развитие искусственного интеллекта
Принципы ИИ

Прежде чем описываться технологические принципы, без которых немыслимо развитие искусственного интеллекта, стоит познакомиться с этическими законами робототехники. Их в 1942 году вывел Айзек Азимов в своём романе «Хоровод»:

  • Робот или система с искусственным интеллектом не может навредить человеку своим действием или же своим бездействием допустить, чтобы человеку был приченен вред.
  • Робот должен повиноваться приказам, которые получает от человека, кроме тех, которые противоречат Первому закону.
  • Робот должен заботиться о своей безопасности, если это не противоречит Первому и Второму Законам.
До выхода в свет романа Азимова, искусственный интеллект ассоциировался с образом Франкенштейна Мэри Шелли. Искусственно созданное подобие человека с разумом восстает против людей. Эту же страшилку перенесли и в знаменитый блокбастер Голливуда «Терминатор».

Интересен факт, что в 1986 году Айзек Азимов дописал еще один пункт к законам робототехники. Писатель предпочел назвать его «нулевым»:

0. Робот не может навредить человеку, если только не докажет, что в конечном итоге это (вред) будет полезно для всего человечества.

Разобравшись с этическими законами, перейдем к технологическим принципам искусственного интеллекта:

  • Машинное обучение (МО) – принцип развития ИИ на основе самообучающихся алгоритмов. Участие человека при таком подходе ограничивается загрузкой в «память» машины массива информации и постановкой целей. Существует несколько методик МО: обучение с учителем – человек задает конкретную цель, хочет проверить гипотезу или подтвердить закономерность. Обучение без учителя – результат интеллектуальной обработки данных неизвестен – компьютер самостоятельно находит закономерности, учится думать как человек. Глубокое обучение – это смешанный способ, главное отличие в обработке больших массивов данных и использование нейросетей.
  • Нейросеть – математическая модель, которая имитирует строение и функционирование нервных клеток живого организма. Соответственно в идеале – это самостоятельно обучаемая система. Если перенести принцип на технологическую основу, то нейросеть – это множество процессоров, которые выполняют какую-то одну задачу в масштабном проекте. Другими словами суперкомпьютер – это сеть из множества обычных компьютеров.
  • Глубокое обучение относят в отдельный принцип ИИ, так как этот метод используется для обнаружения закономерностей в огромных массивах информации. Для такой непосильной человеку работы, компьютер использует усовершенствованные методики.
  • Когнитивные вычисления – одно их направлений ИИ, которое изучает и внедряет процессы естественного взаимодействия человека и компьютера, наподобие взаимодействия между людьми. Цель технологии искусственного интеллекта заключается в полной имитации человеческой деятельности высшего порядка – речь, образное и аналитическое мышление.
  • Компьютерное зрение – это направление ИИ используется для распознавания графических и видеоизображений. Сегодня машинный интеллект может обрабатывать и анализировать графические данные, интерпретировать информацию в соответствии с окружающей обстановкой.
  • Синтезированная речь. Компьютеры уже могут понимать, анализировать и воспроизводить человеческую речь. Мы уже можем управлять программами, компьютерами и гаджетами с помощью речевых команд. Например, Siri или Google assistant, Алиса в Яндексе и другие.
Кроме того, трудно представить существование искусственного интеллекта без мощных графических процессоров, которые являются сердцем интерактивной обработки данных. Для интеграции ИИ в различные программы и устройства необходима технология API – программные интерфейсы приложений. Используя API можно без труда добавлять технологии искусственного интеллекта в любые компьютерные системы: домашняя безопасность, умный дом, оборудование на ЧПУ и прочее.

Сфера использования ИИ
Искусственный интеллект постепенно приходит во все отрасли человеческой деятельности, делая обычные программные комплексы интеллектуальными:
Медицина и здравоохранение
Компьютерные системы ведут учет пациентов, помогают в расшифровке диагностических результатов. Например, снимки УЗИ, рентгена, томографа и другого медоборудования. Интеллектуальные системы даже могут по наличию признаков у пациента определять болезнь, предлагать оптимальные варианты лечения. В магазине приложений Гугла можно найти программы-помощники здорового образа жизни. Эти приложения считывают пульс и температуру тела при касании дисплея телефона палицами, чтобы определить уровень стресса человека и подсказать, как его снизить.
Розничные продажи в онлайн-магазинах
Многим уже знакома релевантная реклама Гугла и Яндекса. С её помощью ритейлеры предлагают товары и услуги в соответствии с интересами пользователя. Например, вы посещали интернет-магазин купальников, какие-то модели рассматривали, читали характеристики и прочее. Покинув магазин, вы некоторое время будете видеть рекламу купальников на других сайтах. По схожему принципу работают блоки «похожие товары» в интернет-магазинах. Системы аналитики изучают поведенческие метрики пользователя, определяют его покупательские пристрастия и показывают релевантные (по их мнению) предложения.
Политика
Интеллектуальные машины помогли Барак Обаме выиграть вторые президентские выборы. Для своей кампании тогда ещё действующий президент США нанял лучшую команду профессионалов в области анализа данных. Специалисты использовали возможности интеллектуальных машин, чтобы рассчитать наилучший день, штат и аудиторию для выступлений Обамы. По оценкам специалистов это дало перевес в 10-12%.
Промышленность
Искусственный интеллект может анализировать данные с разных производственных участков и регулировать нагрузку на оборудование. Кроме того, интеллектуальные машины используются для прогнозирования спроса в разных отраслях промышленности.
Игровая индустрия и образование
Искусственный интеллект активно применяется создателями игр. Умные машины, робототехника постепенно внедряются в образовательные процессы большинства государств.
Основные проблемы ИИ
Как вы понимаете возможности искусственного интеллекта на данной стадии развития не безграничны. Перечислим главные трудности:
1
Обучение машин возможно только на основе массива данных. Это означает, что любые неточности в информации сильно сказываются на конечном результате.
2
Интеллектуальные системы ограничены конкретным видом деятельности. То есть умная система, настроенная на выявление мошенничества в сфере налогообложения, не сможет выявлять махинации в банковской сфере. Мы имеем дело с узкоспециализированными программами, которым ещё далеко до многозадачности человека.
3
Интеллектуальные машины не являются автономными. Для обеспечения их «жизнедеятельности» необходима целая команда специалистов, а также большие ресурсы.
Искусственные Нейронные Сети (ИНС)
Искусственные Нейронные Сети — это математические модели, созданные по аналогии с биологическими нейронными сетями. ИНС способны моделировать и обрабатывать нелинейные отношения между входными и выходными сигналами. Адаптивное взвешивание сигналов между искусственными нейронами достигается благодаря обучающемуся алгоритму, считывающему наблюдаемые данные и пытающемуся улучшить результаты их обработки.
Для улучшения работы ИНС применяются различные техники оптимизации. Оптимизация считается успешной, если ИНС может решать поставленную задачу за время, не превышающее установленные рамки (временные рамки, разумеется, варьируются от задачи к задаче).

ИНС моделируется с использованием нескольких слоёв нейронов. Структура этих слоёв называется архитектурой модели. Нейроны представляют собой отдельные вычислительные единицы, способные получать входные данные и применять к ним некоторую математическую функцию для определения того, стоит ли передавать эти данные дальше.

В простой трёхслойной модели первый слой является слоем ввода, за ним следует скрытый слой, а за ним — слой вывода. Каждый слой содержит не менее одного нейрона.

С усложнением структуры модели посредством увеличения количества слоёв и нейронов возрастают потенциал решения задач ИНС. Однако, если модель оказывается слишком «большой» для заданной задачи, её бывает невозможно оптимизировать до нужного уровня. Это явление называется переобучением (overfitting).

Архитектура, настройка и выбор алгоритмов обработки данных являются основными составляющими построения ИНС. Все эти компоненты определяют производительность и эффективность работы модели.

Модели часто характеризуются так называемой функцией активации. Она используется для преобразования взвешенных входных данных нейрона в его выходные данные (если нейрон решает передавать данные дальше, это называется его активацией). Существует множество различных преобразований, которые могут быть использованы в качестве функций активации.

ИНС являются мощным средством решения задач. Однако, хотя математическая модель небольшого количества нейронов довольно проста, модель нейронной сети при увеличении количества составляющих её частей становится довольно запутанно. Из-за этого использование ИНС иногда называют подходом «чёрного ящика». Выбор ИНС для решения задачи должен быть тщательно обдуманным, так как во многих случаях полученное итоговое решение нельзя будет разобрать на части и проанализировать, почему оно стало именно таким.
По всем вопросам свяжитесь с нами любым удобным способом:

E-mail: hcoladz@mail.ru
Телефон: +79141234567
Соцсети: VK | Instagram
This site was made on Tilda — a website builder that helps to create a website without any code
Create a website